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ABSTRACT: Present and future climate change information is required to develop adaptation and mitigation strategies at
national and international levels. This study assessed the simulated surface air temperature (SAT) and precipitation (PR) over
China from 24 models involved in the Coupled Model Intercomparison Project Phase 5 (CMIP5). The reliability ensemble
average (REA) is applied to project the SAT and PR change under representative concentration pathway (RCP) scenarios
over China in the 21st century. The results show that most CMIP5 models tend to underestimate SAT and overestimate PR in
China. Models generally agree better with the observed SAT than PR. For SAT, the ensemble prediction shows that warming
is expected all over China for all RCPs. The warming trend from 2006 to 2099 in China is 0.87 ± 0.14 ∘C 100 year−1,
2.47 ± 0.48 ∘C100 year−1, 5.85 ± 0.73 ∘C100 year−1 for RCP 2.6, RCP 4.5 and RCP 8.5, respectively. Northern regions
experience more warming than southern regions. The Songhua River basin warms the most, considering the ten studied
basins for RCP 4.5 and RCP 8.5. Under RCP 2.6, the largest warming trend occurs in the Huaihe River basin. For PR, the
spatial pattern of PR change has zonal characteristics. The girds with the maximum linear trend, i.e. >7.5mmdecade−1, are
concentrated in the upper Yangtze River basin. For temporal scale, PR in China is also projected to increase during the 21st
century by 4.89± 2.30%100 year−1, 8.67± 6.27%100 year−1 and 13.39± 12.58%100 year−1 for RCP 2.6, RCP 4.5 and RCP
8.5, respectively. PR tends to decrease in the Yangtze River basin, Southeast River Drainage and Pearl River basin during
the early period (2011–2030) for all RCPs, largely increase thereafter. However, uncertainties are unavoidable for SAT and
PR projections. The PR uncertainty exceeds the temperature uncertainty. More studies regarding the analysis of narrowing
uncertainties are essential for a better understanding of climate change.
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1. Introduction

It is generally accepted that global climate has changed,
caused by increasing atmospheric carbon dioxide
(CO2) and other greenhouse trace gas concentrations
and anthropogenic activities (IPCC, 2001). Climate
change has inevitable effects on biological, physical and
socio-economic processes. Present and future climate
change information at global, regional and local scales
is required to develop national- and international-level
adaptation and mitigation strategies (Xu et al., 2010;
Miao et al., 2011). Due to the progresses in modelling
and understanding of the climate system physical pro-
cesses, the general circulation model (GCM) has gradually
become a primary tool for climate change research (IPCC,
2007). Driven by different radiative forcings, GCMs can
simulate present-day climate and project future climate
conditions under different scenarios (IPCC, 1990; Li
et al., 2011; McAfee et al., 2011; Xu et al., 2011; Miao
et al., 2013; Ou et al., 2013).

*Correspondence to: C. Miao, State Key Laboratory of Earth Surface
Processes and Resource Ecology, College of Global Change and Earth
System Science, Beijing Normal University, Beijing 100875, P.R. China.
E-mail: miaocy@vip.sina.com

The World Climate Research Program (WCRP)
developed the Coupled Model Intercomparison Project
(CMIP), which provides coordinated simulations from
the state-of-the-art global climate models. The project
provides an opportunity for model comparison and
multi-model ensemble strategy development (Li et al.,
2011). Climate models are not perfect because the theo-
retical understanding of climate remains incomplete, and
certain simplifying assumptions are unavoidable when
formulating these models (Reichler and Kim, 2008).
Recent studies have shown that the model agreement
with present-day observations is currently the only way
to determine model quality (IPCC, 2001); good model
performance evaluated from the present climate guaran-
tees the higher reliability of climate change simulations
to some extent (Giorgi and Mearns, 2002; Coquard
et al., 2004). Various studies have attempted to assess
the performance of climate models in simulating the
present-day climate and to predict the future climate on
continental and regional scales (Lambert and Boer, 2001;
Duan and Phillips, 2010; Scherrer, 2011; Miao et al.,
2012a; Grainger et al., 2013; Sillmann et al., 2013; Wu
et al., 2013). The results have shown that many cou-
pled global climate models have increasingly performed
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well in simulating climate changes due to extensive
model development (Zhou and Yu, 2006; Reichler and
Kim, 2008; Annan and Hargreaves, 2010). However,
not all GCMs are similarly able to represent accurate
climate characteristics (Coquard et al., 2004; Phillips and
Gleckler, 2006; Räisänen, 2007; Giorgi and Coppola,
2010), and forecasts of climate change are inevitably
uncertain (Allen et al., 2000).
To reduce the simulation uncertainly and improve GCM

predictions, many studies have adopted multi-model
ensemble techniques. It is generally accepted that the
model uncertainties may be reduced and the model
credibility can be improved by employing multi-model
ensembles (Feng et al., 2010). Many studies have also
simulated historical climate with respect to observations.
Generally, the performance of multi-model ensem-
bles is often found to be better than the individual
simulation (Krishnamurti, 2000; IPCC, 2001; Duan
and Phillips, 2010). A possible explanation is that the
multi-model ensemble embraces distinctly different
physical parameterizations, thus surmounting the lim-
itations of an overconfident single-model simulation
(Duan and Phillips, 2010). Hence, ensembles can be
used to produce more reliable predictions (Tebaldi and
Knutti, 2007).
Giorgi and Mearns (2002) developed the reliability

ensemble averaging (REA) methodology that produces
a weighted average of climate change ensemble results
based on the ‘reliability’ of each model. ‘Reliability’
considers the ability of a particular model to simulate the
observed climate and its degree of convergence in pre-
dicted climate change compared with the other ensemble
members. The REA method also assesses the reliability of
the projected weighted average climate change, allowing
PDFs for climate variables in climate change conditions
to be determined (Giorgi and Mearns, 2002; Giorgi,
2003). Many previous studies have applied the method
for the evaluation and projection of climate change
in different regions. For example, Moise and Hudson
(2008) applied the method to a multi-model ensemble of
coupled atmosphere–ocean general circulation models
(AOGCMs) from the third phase of CIMP (CMIP3) to
produce mean and probabilistic climate change projec-
tions for Australia and southern Africa. Mote and Salathé
(2010) analysed the future climate in the Pacific North-
west for each season and the annual mean based on REA
results. Giraldo Osorio and García Galiano (2011) applied
the REA method to assess the ability of the regional
climate models (RCMs) to reproduce the present-day cli-
mate and to evaluate the convergence of different RCMs
for a given forcing scenario in the Senegal River basin.
Furthermore, Tao et al. (2012) presented projected pre-
cipitation and temperature changes in the Yangtze River
basin from a 20-member ensemble mean. Torres and
Marengo (2013) utilized the REA method to assess the
uncertainties involved in projections of seasonal tempera-
ture and precipitation changes over South America in the
21st century.

China is a large agricultural country with a large fraction
of the world’s land. The climate in China varies greatly
over space and time due to the pronounced topographical
gradients and complexity (Gao et al., 2008). Temperature
and precipitation changes have a major effect on the runoff
of river basins, water cycle and the safety of the water sup-
ply (Miao et al., 2010, 2012b). Nevertheless, there are not
enough studies carried out to comprehensively assess the
spatio-temporal changes for all of the river basins in China
in 21st century. The information is required to assess the
effect of climate change on the spatial and temporal distri-
butions of water resources and to develop adaptation and
mitigation strategies according to different regions. More-
over, the fifth experiment of CIMP (CMIP5), used for the
Intergovernmental Panel on Climate Change (IPCC) fifth
assessment report, is now available. Compared with the
previous experiment of the CMIP, extensive efforts have
been put forth in CMIP5, including a larger number of
more complex models run at higher resolution, with more
complete ‘representative concentration pathways’ (RCPs)
of external forcings, more scenarios and more saved diag-
nostics (Moss et al., 2010; Taylor et al., 2012). Thus, the
goal of this study is to (1) assess the performance of the
CMIP5 GCMs in simulating precipitation and tempera-
ture variation over China and (2) project the temperature
and precipitation change under different concentrations or
emission scenarios in different river basins of China in the
21st century.

2. Data and methods

2.1. Data

Monthly surface air temperature (SAT) and precipita-
tion (PR) observations for China were obtained from
the National Meteorological Information Center, China
Meteorological Administration (CN05) (Xu et al., 2009)
and the gauge-based analysis of daily precipitation over
East Asia (EA) (Xie et al., 2007), respectively. The EA
data set is a combination of more than 2200 gauge observa-
tions (Figure 1(a)), and CN05 is based on interpolated data
from 751 observing stations in China (Sun et al., 2014).
The data set resolutions are both 0.5∘ × 0.5∘.
Monthly SAT and PR from 24 IPCCAR5CMIP5models

(Taylor et al., 2012) were used in this study (Table 1, avail-
able at http://pcmdi9.llnl.gov/esgf-web-fe/). Model results
from historical simulations (1962–2005) and future cli-
mate projections (2006–2099) under different scenarios
were used. Unlike the Special Report on Emissions Sce-
narios (SRES) B1, A1B and A2 used in CMIP3, CMIP5
uses the newRCPs. The RCPs are named according to their
radiative forcing level in 2100, i.e. RCP 8.5 corresponds to
a radiative forcing of 8.5Wm−2 in 2100. The three main
future scenarios, i.e. RCP 2.6, RCP 4.5 and RCP 8.5, were
involved in this research. The CMIP5 models have differ-
ent spatial resolutions. To provide fair comparison with
observations, all model data were interpolated to a com-
mon 0.5∘ × 0.5∘ grid. Moreover, 1970–1999 was selected
as the baseline period.
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(a)

(b)

Figure 1. Location of the climatic divisions, main river basins and the
number of gauge stations in a 0.5∘ latitude–longitude grid. The roman
numerals in (a) denote the climate regions: I, northeast China (NEC);
II, Inner Mongolia (IM); III, north China (NC); IV, south-central China
(SCC); V, southwest China (SW); VI, Qinghai-Tibet Plateau region
(QT); VII, northwest China (NWC). The numbers in (b) denote the river
catchments: 1, Songhua River; 2, Liaohe River; 3, Haihe River; 4, Yellow
River; 5, Huaihe River; 6, Yangtze River; 7, Southeast River Drainage; 8,
Pearl River; 9, Southwest River Drainage; 10, Northwest River Drainage.

2.2. Analysis methods

2.2.1. Skill score

In analysing the simulated SAT and PR patterns from 1962
to 2005, two skill score metrics were used to evaluate
the overall agreement between the predictions P and the
observations O. The first metric is the Pearson correlation
coefficient (R), which quantifies similarities between the
spatial and temporal patterns of the predicted and observed
values:

R =

∑n
i=1

(
Pi − P

)(
Oi − O

)
√∑n

i=1

(
Pi − P

)2
×
√∑n

i=1

(
Oi − O

)2
(1)

where i represents the number of grids when quantifying
the spatial patterns, but means the number of time when
quantifying the temporal patterns. R is between −1 and
1. In general, R∼ 1 implies a close match between the
(spatial or temporal) simulated and observed climate
characteristics, and R∼ 0 indicates a lack of similarity.
Moreover, for R∼−1, the respective simulated and
observed fields are similar however inversely proportional.

The secondmetric is the root-mean-square error (RMSE)
between the simulated and observed data:

RMSE =

√√√√1
n

n∑
i=1

(
Pi − Oi

)2
(2)

where the sum is calculated for n spatial grid points (or
temporal units). Therefore, as the RMSE gets smaller,
the difference between the point-wise magnitudes of
the simulated and observed climate characteristics
decreases.
The third metric is the Taylor diagram, which can pro-

vide a concise statistical summary of how well patterns
match between simulation and observation in terms of their
correlation (R), their root-mean-square difference (RMSD)
and the ratio of their variances (Taylor, 2001). The radial
distance from the origin is proportional to the standard
deviation of a pattern. The correlation between the sim-
ulation and observation is given by the azimuthal position
of the test field. The RMSD is defined by Taylor (2001):

RMSD2 = �2
p + �2

0 − 2�p�oR (3)

where �p and �o are the standard deviations of the simu-
lations and observation, respectively. The RMSD between
the simulation and observation field is proportional to their
distance apart (in the same units as the standard deviation).

2.2.2. REA method

The REAmethodwas adopted to project the changes of PR
and SAT during 2006–2099 under the three RCP scenarios
(i.e. RCP 2.6, RCP 4.5 and RCP 8.5). Considering that
regional climate in China is largely different, we calculated
the REA weight based on the climatic division map for
China (Figure 1(a)) (Ren et al., 1985). To better understand
hydrological processes, climate change in ten river basins
(Cong et al., 2010; Zhai et al., 2010; Liu et al., 2012;
Figure 1(b)) under the future scenarios was compared and
analysed. The SAT and PR were projected in the 21st
century over China and the ten river basins (Figure 1(b))
using these weights.
REA uses a bias factor and a distance factor to weight

each model’s output. The weights are defined by Giorgi
and Mearns (2002):

Wi =
[(
RB,i

)m ×
(
RD,i

)n][1∕(m×n)]
=

[(
�T||BT ,i||

)m

×

(
�T||DT ,i

||
)n][1∕(m×n)]

(4)

Theweighted ensemble average is computed for separate
subcontinental regions as

ΔT̆ =
∑

i WiΔTi∑
i Wi

(5)

where the individual model projections of change are indi-
cated by ΔTi. The weight for an individual model is Wi,
defined as the product of two terms, i.e. RB,i and RD,i; one
inversely proportional to the absolute bias, BT ,i and the
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Table 1. The CMIP5 models for which historical, RCP 2.6, RCP 4.5 and RCP 8.5 results were available from the Earth System Grid
(ESG).

GCM Model Source Resolution
(longitude× latitude)

1 BCC-CSM 1.1 Beijing Climate Center, China Meteorological Administration, China 2.812∘ × 2.812∘
2 BCC-CSM 1.1(m) Beijing Climate Center, China Meteorological Administration, China 1.125∘ × 1.125∘
3 BNU-ESM Beijing Normal University, China 2.812∘ × 2.812∘
4 CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 2.812∘ × 2.812∘
5 CNRM-CM5 Centre National de Recherches Meteorologiques, Meteo-France,

France
1.406∘ × 1.406∘

6 CSIRO-Mk3.6.0 Australian Commonwealth Scientific and Industrial Research
Organization, Australia

1.875∘ × 1.875∘

7 CCSM4 National Center for Atmospheric Research (NCAR), USA 1.25∘ × 1.25∘
8 FIO-ESM The First Institute of Oceanography, SOA, China 2.812∘ × 2.812∘
9 GFDL-CM3 Geophysical Fluid Dynamics Laboratory, USA 2.5∘ × 2.0∘
10 GFDL-ESM2G Geophysical Fluid Dynamics Laboratory, USA 2.5∘ × 2.0∘
11 GISS-E2-H NASA Goddard Institute for Space Studies, USA 2.5∘ × 2.0∘
12 GISS-E2-R NASA Goddard Institute for Space Studies, USA 2.5∘ × 2.0∘
13 HadGEM2-ES Met Office Hadley Centre, UK 1.241∘ × 1.875∘
14 IPSL-CM5A-LR Institut Pierre-Simon Laplace, France 3.75∘ × 1.875∘
15 IPSL-CM5A-MR Institut Pierre-Simon Laplace, France 2.5∘ × 1.259∘
16 MPI-ESM-LR Max Planck Institute for Meteorology, Germany 1.875∘ × 1.875∘
17 MPI-ESM-MR Max Planck Institute for Meteorology, Germany 1.875∘ × 1.875∘
18 MIROC-ESM AORI, NIES, JAMSTEC, Japan 2.812∘ × 2.812∘
19 MIROC-ESM-CHEM AORI, NIES, JAMSTEC, Japan 2.812∘ × 2.812∘
20 MIROC5 Atmosphere and Ocean Research Institute (The University of Tokyo),

National Institute for Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology, Japan

1.406∘ × 1.406∘

21 MRI-CGCM3 Meteorological Research Institute, Japan 1.125∘ × 1.125∘
22 NorESM1-M Norwegian Climate Centre, Norway 2.5∘ × 1.875∘
23 NorESM1-ME Norwegian Climate Centre, Norway 2.5∘ × 1.875∘
24 FGOALS-g2 Institute of Atmospheric Physics, Chinese Academy of Sciences, China 2.812∘ × 3.0∘

other to the absolute distance between the model projected
change and the final weighted ensemble average, DT ,i,
respectively. Moreover, �T is a measure of natural variabil-
ity, ensuring that models with small bias and deviations
relative to natural fluctuations would not be unjustly dis-
counted. We computed time series of observed regionally
averaged SAT and PR for the period 1962–2006 within
seven climatic divisions (Figure 1(a)) using the CN05 and
EA data sets. Then, we computed 10-year moving aver-
ages after linearly detrending the data. In addition, �T was
estimated to be the difference between the 10-year mov-
ing average maximum and minimum values. The expo-
nent m and n can modulate the relative importance of the
two terms in the weighted average and are equivalent in
this study (Giorgi and Mearns, 2002; Giraldo and García
Galiano, 2011). Through the parameters defined above, the
uncertainty range around the REA mean change (�̆ΔT ) can
be estimated by

�̆ΔT =
⎡⎢⎢⎣
∑

i Ri
(
ΔTi − ΔT̆

)2∑
i Ri

⎤⎥⎥⎦
1∕2

(6)

The upper and lower uncertainty limits are thus defined
by

ΔT+ = ΔT̆ + �̆ΔT (7a)

ΔT− = ΔT̆ − �̆ΔT (7b)

Thus the total uncertainty range is give byΔT+ − ΔT− =
2�̆ΔT . Specific details of the REA process are provided by
Giorgi and Mearns (2002).

3. Results

3.1. Comparison of model simulations with
observations

3.1.1. Temporal simulations

Figure 2 shows box plots of the observed and simu-
lated average SAT and PR over ten river basins and
China. For SAT, most models tend to underestimate the
annual mean SAT over different basins and China. The
MIROC5 and MIROC-ESM-CHEM models always over-
estimate the annual mean SAT in all basins. Moreover,
the CSIRO-Mk3.6.0 model gives the highest cold bias in
Yellow River basin, Yangtze River basin and Southwest
River drainage system compared observations and other
models. However, in Songhua River basin, Haihe River
basin, Northwest River drainage system and China, the
FGOALS-g2model has the lowest annual mean SAT. In all
river basins, the biases of the ensemble results based on the
REA method are relatively lower. For PR, except South-
east River drainage system and Pearl River basin, almost
all models overestimate the annual mean PR in other
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Figure 2. Box plots of the observed and simulated average temperature (left) and precipitation (right) for the period 1970–1999 in the ten river basins
and China. The coloured boxes indicate the mean climatological variables outputted by single GCM (black), multi-model ensemble mean (blue) and

observation (red).

river basin and over China compared with the observa-
tions. The BNU-ESMmodel predicts the maximum biases
in Haihe River basin, Yellow River basin, Huaihe River
basin, Yangtze River basin and Northwest River drainage
system. The ensemble mean overestimates PR in all

regions except Southeast River drainage system and Pearl
River basin.
Figure 3 shows the correlation coefficient (R) and

RMSE between simulation and observation. The sim-
ulation comes from 24 models and REA results, the

© 2014 Royal Meteorological Society Int. J. Climatol. (2014)
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Figure 3. The performances of each single-model and multi-model ensemble outputs for annual simulation and 10-year moving average. The labels
in horizontal axis indicate the regions, number 1–10 represent the ten river basins and number 11 represent China. The labels in vertical axis indicate

the simulation results, numbers 1–24 represent the 24 single model, and number 25 is the REA results.

annual and 10-year moving average of SAT and PR are
involved. For SAT, 10-year moving average SAT per-
forms better than the annual SAT (higher R). In most
models, R is >0.5. Moreover, the RMSE is primarily
between 0.17 and 0.47; GCM5 (CNRM-CM5) and GCM6
(CSIRO-Mk3.6.0) perform better in most regions. The
RMSE and R between SAT simulated by REA and

observation are better in all river basins, indicating the
improved performance on temporal scales. For PR, the
calculated correlation coefficients are invariably <0.6
and the RMSEs are >0.23 in all regions compared with
the observations. The results indicate the poor temporal
performances for all models in simulating the annual PR.
The ensemble method does not improve the performance

© 2014 Royal Meteorological Society Int. J. Climatol. (2014)
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Figure 4. Annual cycles of monthly mean SAT (left) and PR (right) over
China during the period 1970–1999. The thick black lines indicate the

results of observation and each model simulation.

greatly. Overall, all models cannot accurately simulate the
temporal PR and SAT characteristics in all river basins,
and the performances are improved when facing decadal
scale. Moreover, GCMs generally show better agreement
with the observed SAT than PR; the GCMs are much less
accurate at representing the annual variance than decadal
variance.
Figure 4 compares the simulated monthly SAT and PR

against the corresponding observations for the period
1970–1999, suggesting that the models are able to pre-
dict a realistic annual temperature and PR cycle. All
models capture the monthly SAT profile characteris-
tics. Most models underestimate monthly mean SAT,
especially in winter. Generally, most models simulate
the seasonal variation characteristics well with a sin-
gle peak. The maximum PR is predicted during the
monsoon season, except in GCM1 (BCC-CSM 1.1),
GCM3 (BNU-ESM), GCM13 (HadGEM2-ES), GCM19
(MIROC-ESM-CHEM) and GCM24 (FGOALS-g2).

However, nearly all GCMs overestimate the PR in all sea-
sons. The simulated PR has a higher variation than the SAT
variation.

3.1.2. Spatial simulations

Figure 5 shows the spatial distribution agreement between
the observations andmodel simulation for the annual mean
SAT and PR during the period 1970–1999. Compared
with single-model predictions, the REA results generally
perform better at simulating the spatial distributions, espe-
cially for PR. Figure 6 compares the spatial distribution
of 30-year (1970–1999) average SAT and PR between
observation and multi-model ensemble mean. The ensem-
ble reproduces the important spatial temperature and
PR characteristics in China, and the spatial correlation
coefficients between the observations and ensemble mean
are 0.85 and 0.81, respectively. Figure 6 also indicates the
errors between the observations and REA results. For SAT,
the REA results are higher relative to the observations
over the mountain range along the mountainous areas in
northwestern China, while cold biases are observed over
northern and northwestern China, especially in the Tibetan
Plateau. For PR, the positive PR error is largest across the
mountainous areas in southwestern China and the Tibetan
Plateau, whereas the negative error occurs in southeastern
China.

3.2. SAT and PR projection in the 21st century

3.2.1. Spatial patterns of climate change

Figure 7 shows the spatial distribution of projected annual
and seasonal temperature (linear trend) by using REA
method for the period 2006–2099. Warming trends in
the 21st century are identified over China in all emis-
sion scenarios. The range for these three scenarios is
0.02–0.78 ∘C decade−1. The RCP 2.6 scenario, which
represents the lowest RCP scenario assuming significant

Figure 5. Taylor diagrams for the spatial distribution simulations of SAT (left) and PR (right). The coloured makers indicate the outputs of each
model simulation (red) and the REA result (blue).

© 2014 Royal Meteorological Society Int. J. Climatol. (2014)
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Figure 6. Spatial distribution of 30-year (1970–1999) average temperatures (∘C) (left) and precipitation (mm) (right) based on the observation and
REA results.

action to mitigate climate change (Rogelj et al., 2012),
has the smallest linear trend in SAT; the maximum trend is
<0.15 ∘Cdecade−1. RCP 8.5 represents a high-emission,
non-mitigation future (Rogelj et al., 2012) and yields
the largest warming trend, i.e. >0.37 ∘Cdecade−1. A
range from 0.16 to 0.37 ∘Cdecade−1 is detected for the
intermediate scenario RCP 4.5. The warming in northern
China is more pronounced than southern China, espe-
cially under RCP4.5 and RCP 8.5, which are similar with
observation and projection of models (Zhou and Yu, 2006;
You et al., 2014). Under RCP 4.5 and RCP8.5, the spring
temperature shows relatively lower warming over nation.
In northern China, including Songhua River, Liaohe River,

Haihe River and Yellow River basin, the warming trend in
December–January–February (DJF) is most pronounced.
In southeastern China, including the middle and lower
reaches of Yangtze River basin, Southeast River drainage
system and Pearl River basin, the contribution to future
warming in September–October–November (SON) is
larger than that in other seasons. While in the Northwest
River Drainage system, the projected temperature in
June–July–August (JJA) shows higher linear trend. The
warming in northern China is more pronounced than
southern China, especially under RCP4.5 and RCP 8.5.
Under RCP 2.6, the annual and seasonal trends in the
upper Yangtze River basin, Southwest River drainage

© 2014 Royal Meteorological Society Int. J. Climatol. (2014)
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Figure 7. The decadal warming rates of projected SAT for the period 2006–2099 under the RCP 2.6, RCP 4.5 and RCP 8.5 scenarios.

system and southern of Northern River drainage system
are not significant.
The spatial patterns of projected annual and seasonal

PR changes under three emission scenarios are shown
in Figure 8. The linear PR trends range from −10 to
20mmdecade−1. PR increases nationwide in 21st century
under all scenarios. The trends increase from western to
eastern China, which is consistent with the previous study
(Xu and Xu, 2012; Wang and Chen, 2013). The predicted
trends are >10mmdecade−1 in eastern China; the largest
trends are concentrated in the upper Yangtze River basin.

Some areas have negative PR trends, primarily located
in the central and southwest Northwest River drainage
system. Seasonally, the spatial pattern of the PR change
exhibits zonal characteristics. In Yangtze River basin and
Huaihe River basin, the projected PR showed significant
increasing trend in March–April–May (MAM) and JJA
under all scenarios, but decreasing trend in SON under
the RCP 8.5. The PR in MAM gave the greatest contri-
bution to the future wetting in Yangtze River basin under
all emission scenarios. PR in Southeast River drainage
system, Pearl River basin and the lower of Southeast River

© 2014 Royal Meteorological Society Int. J. Climatol. (2014)
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Figure 8. The decadal trends of projected precipitation for the period 2006–2099 under the RCP 2.6, RCP 4.5 and RCP 8.5 scenarios.

drainage system is projected to decrease in DJF. The main
river basins in northern China showed positive trend in
all seasons, and the contribution of JJA PR to annual PR
increases is the largest. Summer PR in northern China
is relatively higher than southern China, which indicates
that the ‘northern drying and south wetting’ pattern
observed in recent years (Ye et al., 2013) may change
in future under emission scenarios, especially under
the RCP 8.5.

3.2.2. Temporal trends of climate change

The weight of each GCM was obtained using the REA
method. And the projections for SAT and PR over the

21st century under different scenarios were generated
based on the model’s weights (Figure 9). The average SAT
increases in the RCP 2.6, RCP 4.5 and RCP 8.5 scenarios
are 0.87± 0.14 ∘C100 year−1, 2.47± 0.48 ∘C100 year−1

and 5.85± 0.73 ∘C100 year−1, respectively. The changes
in each scenario depend on the analysed period (Tables 2
and 3, and Figure 9). The three RCPs represent the
different radiative forcings, energies and industrial CO2
emission scenarios (Moss et al., 2010; Taylor et al., 2012).
RCP 8.5 represents a ‘high’ emission scenario, and the
radiative forcing in RCP 8.5 increases by approximately
8.5Wm−2 at the end of the 21st century (Taylor et al.,
2012). Therefore, the SAT increases the most in RCP
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Figure 9. Ensemble results of annual mean SAT and annual mean PR in
China during the period of 1962–2099 relative to 1970–1999. The thick
coloured lines indicate the REA outputs in history (black) and RCP2.6
(blue), RCP4.5 (green) and RCP8.5 (red) scenarios. Shading denotes the
±1 standard deviation range of model annual averages. The grey bars in
right of the figure represent the range of 24 model simulation estimations
for the mean changes during 2090–2099. The coloured numbers indicate
the linear trend of annual mean SAT and annual mean PR under different

scenarios during the period 2006–2099.

8.5 and is higher for all periods compared with the other
RCPs. The best SAT change estimate for RCP 8.5 is 5.73
∘C by 2099 (the uncertainty range is 4.0–6.5∘C). The RCP
4.5 scenario is a medium-mitigation emission scenario
that stabilizes the direct radiative forcing at 4.5Wm−2

(∼650 ppm CO2 equivalent) at the end of the 21st century
(Liu et al., 2013). Under the RCP 4.5 scenario, the SAT

change is less than for RCP 8.5, and the best SAT change
estimate is 2.80 ∘C by 2099. In the early 21st century,
SAT increases with the lowest rate. The SAT change for
the period 2011–2030 is 1.20 ∘C, which is less than the
predictions for RCP 2.6 (1.24 ∘C) and RCP 8.5 (1.36 ∘C)
(Table 1). In the RCP 2.6 scenario, the radiative forcing
reaches a maximum near the middle of the 21st century
before decreasing to a nominal level of 2.6Wm−2 (Taylor
et al., 2012). This pathway represents a low so-called
peak-and-decay scenario and yields distinct SAT change
characteristics. The temperature also peaks in the mid-21st
century, decreasing slightly thereafter. Thus, the average
temperature is 1.86 ∘C for the period 2051–2070 and only
1.78 ∘C for the period 2071–2090. For RCP 2.6, the SAT
increases by <2 ∘C by 2099; the best SAT change estimate
is 1.71 ∘C.
Generally, PR increases during the 21st century

under the RCP 2.6, RCP 4.5 and RCP 8.5 scenarios
by 4.87± 2.39%100 year−1, 8.64± 6.37%100 year−1 and
13.33± 12.81%100 year−1, respectively. It is also found
that the projected PR under three scenarios increase for
all periods (Table 3). Under the RCP 2.6 scenario, the
largest PR change occurs in the period 2051–2070; the PR
decreases slightly thereafter, which is similar to the tem-
perature change. These results may provide evidence that
PR and SAT are two important quantities with variations
that are closely related via various physical processes (Wu
et al., 2013).
The projected SAT changes for the 21st century in

the ten river basins are documented in Figure 10. The
SAT change characteristics are similar to the features
for China in all the three scenarios. It is clear that under
both the RCP 4.5 and RCP 8.5 scenarios, the increase
in the decadal mean SAT in the Songhua River vasin
is the largest, increasing by 2.66± 0.49 ∘C100 year−1

and 6.33± 0.82∘C100 year−1, respectively. However, the
largest warming trend occurs in the Huaihe River basin
under the RCP 2.6 scenario. The SAT changes for different
periods in the ten river basins are shown in Table 2. The
SAT changes in the Southeast River drainage system and
Pearl River basin are projected to change less than in the
other basins for all periods, which are related to spatial
pattern of temperature (Zhou and Yu, 2006).

Table 2. Decadal changes of projected temperature in ten river basins and China (unit: ∘C).

Basin 2011–2030 2031–2050 2051–2070 2071–2090

RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5

1 1.34 1.24 1.42 1.93 2.02 2.50 1.93 2.59 3.79 1.87 2.99 5.19
2 1.30 1.14 1.33 1.91 1.90 2.36 1.93 2.41 3.65 1.86 2.83 4.96
3 1.17 1.07 1.26 1.81 1.78 2.20 1.87 2.32 3.45 1.81 2.66 4.71
4 1.11 1.11 1.26 1.63 1.79 2.20 1.73 2.33 3.41 1.64 2.61 4.65
5 1.13 0.96 1.12 1.76 1.68 2.05 1.85 2.25 3.24 1.81 2.56 4.42
6 1.02 0.98 1.11 1.51 1.66 2.05 1.64 2.20 3.22 1.57 2.47 4.35
7 0.84 0.88 0.98 1.32 1.50 1.83 1.45 1.96 2.89 1.41 2.24 3.89
8 0.86 0.89 0.93 1.33 1.41 1.78 1.47 1.92 2.86 1.44 2.23 3.83
9 1.07 1.23 1.31 1.50 1.96 2.26 1.66 2.51 3.48 1.51 2.76 4.66
10 1.31 1.26 1.45 1.82 2.02 2.48 1.92 2.62 3.80 1.83 2.90 5.13
China 1.24 1.20 1.36 1.76 1.92 2.35 1.86 2.149 3.59 1.78 2.79 4.84
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Table 3. Decadal changes of projected precipitation in ten river basins and China (unit: %).

Basin 2011–2030 2031–2050 2051–2070 2071–2090

RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5

1 4.83 4.37 5.49 7.85 8.45 7.77 8.81 11.77 12.19 9.50 12.23 17.69
2 5.62 4.50 5.17 8.13 10.53 8.60 11.91 14.39 14.34 11.83 13.104 18.96
3 6.29 4.90 5.26 8.88 10.33 8.69 11.12 12.34 14.99 10.76 14.49 17.89
4 2.72 2.37 2.59 4.74 5.62 5.29 6.88 7.24 10.10 5.27 9.78 13.62
5 0.99 1.42 2.04 4.15 4.20 4.28 6.03 6.03 8.72 4.94 7.87 12.16
6 −0.32 −0.41 −0.27 2.05 2.32 1.04 3.38 3.72 3.65 3.40 5.16 6.61
7 −1.46 −0.84 −1.79 0.87 0.30 −0.23 2.71 2.72 1.50 2.77 3.58 4.00
8 −0.33 −1.03 −1.98 1.74 2.15 0.23 1.95 3.25 1.81 2.34 4.28 5.67
9 −0.31 0.17 0.38 0.76 1.29 1.61 0.91 3.30 2.47 1.17 3.73 4.65
10 6.50 5.07 6.00 6.43 7.77 8.24 7.97 9.18 12.86 7.34 10.88 16.05
China 1.90 1.54 1.83 3.73 4..40 3.72 5.02 6.18 6.90 4.88 7.40 10.20

The projected PR changes for the 21st century in the
ten river basins are depicted in Figure 11. During the 21st
century, the results show that precipitation increases in
all basins for RCP 2.6, RCP 4.5 and RCP 8.5. The rise
in decadal regional mean PR in the Liaohe River basin
is the largest under the RCP 2.6 and RCP 8.5 scenarios,
changing by 8.57%100 year−1 and 23.53%100 year−1,
respectively. However, under the RCP 4.5 scenario, the
Songhua River basin has the largest change, increas-
ing by 11.73%100 year−1. The PR changes in the ten
river basins have periodical features (Table 3). Com-
pared with PR in baseline time (1970–1999), the river
basins in northern China show more PR in all periods.
In contrast, the Yangtze River basin, Southeast River
drainage system and Pearl River basins show decreased
PR for the period 2011–2030 under all scenarios. The
decadal changes of PR in Yangtze River basin are
consistent with the projection of CMIP3 under SRES
(Tao et al., 2012)

3.2.3. The uncertainties of temperature and
precipitation change

Figures 9, 10 and 11 also show the uncertainty ranges
of temperature and PR changes over China and ten river
basins. The projected SAT uncertainty ranges generated by
REA approach in the three future emission scenarios are
similar. It is obvious that the range of 24 model simulation
estimations (the grey bars in the right of figures) is larger
than the uncertainty range obtained from the REA method
for all the three scenarios (Figures 9 and 10). The uncer-
tainties in projecting future temperature change can be par-
tially reduced by applying the REA method. To quantify
the model weights, REA method takes the performance of
eachmodel in representing the current climate and the con-
vergence of its projection into account. Consequently, the
outlier results are down weighted in the ensemble mean,
and the magnitude of uncertainty range based on weights
can be reduced to some extent (Torres andMarengo, 2013).
The uncertainties in the PR projection generated by

the REA shows no marked improvement when com-
pared with the range of 24 model simulation estimations
(Figures 9 and 11). Thus, the uncertainty range cannot

be narrowed using the REA method in all basins under
the three scenarios. The magnitudes of uncertainty range
are inconsistent among different basins. The uncertainty
ranges has the same order of magnitude in the river
basin over southern China, including Yangtze River basin,
Pearl River basin, Southeast River drainage and Southwest
River drainage system. Moreover, the uncertainty ranges
are similar in all scenarios and time slices, which is in
respond to the no significant change and large discrep-
ancy under different scenarios. In the Liaohe River basin,
Haihe River basin and Northwest River drainage sys-
tem, larger magnitude of uncertainty ranges were detected.
And the magnitudes increase with the time and emission
scenarios.

4. Discussion and conclusions

The performances of 24 CMIP5 climate models in simu-
lating PR and SAT variability in China and different river
basins are evaluated. The projected climate changes for
different scenarios over China and ten river basins accord-
ing to the REAmethod, which is based on the multi-model
ensemble, are described. The results show that most mod-
els underestimate the annual mean SAT in different river
basins and China. Most models overestimate annual mean
PR in China and the river basins in northern and west-
ern China, but underestimate the annual mean PR in the
Pear River basin and Southeast River drainage system. It
is in accordance with the overestimation for extreme PR
in western and northern China, but underestimation for
extreme PR in southern China (Ou et al., 2013). Because
China is a region with complex topography, i.e. the Tibetan
Plateau is to the west and various mountain chains exist
in the northern and central regions, climate in China is
characterized by a large variability in space and time
(Gao et al., 2008). Therefore, all models cannot accurately
simulate the temporal characteristics of PR and SAT in all
climate regions. The GCMs generally show better tempo-
ral performances for SAT than PR. Precipitation variations
are strongly influenced by vertical air movement due to
atmospheric instabilities of various kinds and by the flow
of air over orographic features (IPCC, 2007). Moreover,

© 2014 Royal Meteorological Society Int. J. Climatol. (2014)



PROJECTED TEMPERATURE AND PRECIPITATION OVER CHINA

Figure 10. Ensemble results of annual mean SAT in the ten river basins during the period of 1962–2099 relative to 1970–1999. The thick coloured
lines indicate the REA outputs in history (black) and RCP2.6 (blue), RCP4.5 (green) and RCP8.5 (red) scenarios. Shading denotes the ±1 standard
deviation range of model annual averages. The grey bars in right of the figure represent the range of 24 model simulation estimations for the mean
changes during 2090–2099. The coloured numbers indicate the linear trend of annual mean SAT under different scenarios, unit: ∘C100 year−1.

representing the inherent spatial variability and charac-
teristics of precipitation in global climate models is also
fraught with many difficulties (Stephens and Ellis, 2008).
Moreover, the results indicate that models with higher
resolution do not show better temporal performances in

predicting SAT and PR than those with lower resolutions,
which corroborates previous studies (Miao et al., 2012a).
Under all RCP scenarios, warming trends in the 21st

century appear over China. Overall, the northern regions
exhibit a larger warming than the southern regions under
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Figure 11. Ensemble results of annual mean PR in the ten river basins during the period of 1962–2099 relative to 1970–1999. The thick coloured
lines indicate the REA outputs in history (black) and RCP2.6 (blue), RCP4.5 (green) and RCP8.5 (red) scenarios. Shading denotes the ±1 standard
deviation range of model annual averages. The grey bars in right of the figure represent the range of 24 model simulation estimations for the mean

changes during 2090–2099. The coloured numbers indicate the linear trend of annual mean PR under different scenarios, unit: %100 year−1.

RCP 4.5 and RCP 8.5 on both annual and seasonal scales.
Under the RCP 2.6 scenario, the warming trends in the
eastern regions, especially in the Haihe River basin,
Huaihe River basin and the central Yangtze River basin,
are larger than in the western regions. For temporal

scales, the warming trend from 2006 to 2099 in China is
0.87± 0.14 ∘C100 year−1, 2.47± 0.48 ∘C100 year−1 and
5.85± 0.73 ∘C100 year−1 for RCP 2.6, RCP 4.5 and RCP
8.5, respectively. The warming tendency for different peri-
ods is consistent with the different pathways that the RCPs
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represent in terms of radiative forcing and energy and
industrial CO2 emissions. On regional scales, the temper-
ature change characteristics in ten basins are similar to the
general features of China. The Songhua River basin has
the largest warming among the ten basins under the RCP
4.5 and RCP 8.5 scenarios. However, for RCP 2.6, the
greatest warming trend occurs in the Huaihe River basin.
Precipitation in China is projected to increase by

4.87± 2.39%100 year−1, 8.64± 6.37%100 year−1 and
13.33± 12.81%100 year−1 for RCP 2.6, RCP 4.5 and
RCP 8.5, respectively, during the 21st century. This result
is consistent with the previous global precipitation pre-
dictions (Wentz et al., 2007). The PR trends indicate that
precipitation is sensitive to CO2 emissions. The Yangtze
River basin, Southeast River drainage system, Liaohe
River basin, southern Songhua River basin and the lower
reaches of the Southwest River drainage system are wetter
in the 21st century for all scenarios. The maximum linear
trends are concentrated in Yangtze River basin. Most of
these river basins are located in eastern China. Therefore,
the mean PR change over these regions may be affected
by the monsoon circulation response to global warming,
which determines the change in water vapour convergence
over eastern China (Li et al., 2011; Jiang and Tian, 2012).
Moreover, some locations in the southwest and central
Northwest River Drainage have negative PR trends under
the RCP 2.6 scenario. For the regional mean PR, all basins
are wetter by the end of the 21st century in all the three
emission scenarios. However, PR tends to decrease in the
Yangtze River basin, Southeast River drainage system and
Pearl River basin for the early time period (2011–2030)
under all RCPs, increasing substantially thereafter. This
result is a response to the monsoon circulation. Sun and
Ding (2009) suggested that the enhanced monsoon circu-
lation will exhibit a two-stage evolution during the period
2010–2099 with a prominent increase after the 2040s.
Comparing this study to the previous studies, basically

consistent conclusions are obtained for the spatial pat-
tern and periodic characteristic of SAT and PR change
in 21st century. Some inconsistencies occur in the sea-
sonal changes. Previous study argued that the winter tem-
perature change is larger than other season over China
in future (Jiang et al., 2008; Wang and Chen, 2013; You
et al., 2014). This study shows that winter temperature
in northern China is most pronounced under RCP4.5 and
RCP8. In southeastern China, the SON contribution to
future warming is slightly larger than other seasons. While
in the Northwest River drainage system, the projected tem-
perature in JJA shows higher linear trend.
Besides global climate models, previous studies have

also applied RCMs, with higher resolution, to project the
climate change (Gao et al., 2008; Gao et al., 2012; Gao
et al., 2013; Zhou and Zhou, 2013). In contrast to the
overestimation for PR of Yangtze River basin in GCMs,
Zhou and Zhou (2013) showed that the RCM RegCM3
underestimates both total and extreme PR in the basin. As
simulated by multi-model ensembles, a general cold bias
is found over Tibetan Platau and warm bias in the northern
of Songhua River basin from the RegCM4.0 simulation

(Gao et al., 2013). Regional mean PR increase over
China for multi-model ensemble and RegCM4.0 under
RCP4.5/RCP8.5 are 8.64%/13.34% and 6.3%/8.0% (Gao
et al., 2013) in 21st century, respectively. The difference
in PR change between GCMs and RCM may be related to
the broader areas with a decreased PR.
Faced with the realities of a changing climate, decision

makers in a wide variety of organizations are increasingly
seeking reliable quantitative climate predictions (Hawkins
and Sutton, 2009). However, uncertainties are unavoidable
for SAT and PR projections. The uncertainties in different
scenario projections using the REAmethod are similar. By
applying the REA method, the uncertainties in projecting
future SAT change can be partially reduced. However, the
uncertainty range for PR estimation cannot be narrowed
using the REA method. The uncertainty ranges for PR in
the Liaohe River basin, Haihe River basin and Northwest
River drainage basin are larger than that in other basins.
The PR uncertainty is much larger than for temperature.
The uncertainty arises from three sources, namely model
uncertainty, scenario uncertainty and the random, inter-
nal variability of climate (Hawkins and Sutton, 2009);
model uncertainty is generally the dominant source of
uncertainty for longer lead times (Hawkins and Sutton,
2010). Therefore, future research, particularly regarding
model development, ensemble projections using more
reliable GCMs and an analysis of narrowing uncertainties,
is essential for a better understanding of future changes.
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