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Abstract

Global Circulation Models (GCMs) contributed to the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment
Report (AR4) and are widely used in global change research. This paper assesses the performance of the AR4 GCMs in
simulating precipitation and temperature in China from 1960 to 1999 by comparison with observed data, using system bias
(B), root-mean-square error (RMSE), Pearson correlation coefficient (R) and Nash-Sutcliffe model efficiency (E) metrics.
Probability density functions (PDFs) are also fitted to the outputs of each model. It is shown that the performance of each
GCM varies to different degrees across China. Based on the skill score derived from the four metrics, it is suggested that
GCM 15 (ipsl_cm4) and GCM 3 (cccma_cgcm_t63) provide the best representations of temperature and precipitation,
respectively, in terms of spatial distribution and trend over 10 years. The results also indicate that users should apply
carefully the results of annual precipitation and annual temperature generated by AR4 GCMs in China due to poor
performance. At a finer scale, the four metrics are also used to obtain best fit scores for ten river basins covering mainland
China. Further research is proposed to improve the simulation accuracy of the AR4 GCMs regarding China.
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Introduction

The global temperature has significantly increased in recent

decades, according to both direct measurements and credible

proxy data. The IPCC-AR4 indicates that the rise in global-

average surface temperature has been particularly pronounced

since about 1950, with an updated trend of 0.7460.18 uC during

1906–2005 [1]. IPCC-AR4 also estimates that on average a

warming of about 0.2 uC/decade may occur during the next two

decades. Another key variable, precipitation is expected to

increase under global warming at high latitudes and in the vicinity

of the equator, but decrease in the subtropics [2]. It is believed that

precipitation will experience an overall increase on average due to

there being greater evaporation [3]. Climate change can have

major impacts on vulnerable natural systems and sensitive human

systems at local, regional and national scales. Accordingly, there is

an urgent need for an improved understanding of climate change,

its consequences, and mitigation and adaptation strategies [4].

To provide information to support IPCC-AR4, more than 20

modeling groups around the world conducted climate change

simulations using different GCMs. These IPCC-AR4 GCMs can

be used to simulate present-day and projected future climate

conditions under different scenarios, and hence inform decision

makers regarding potential mitigation measures and adaptation

strategies. However, the theoretical description of the climate

remains incomplete, and simplifying assumptions are inherent

when building these GCMs [5]. Epistemic and aleatory uncer-

tainties in climate models introduce biases into the simulations,

and so GCMs are unable to represent fully the intensity and

frequency of observed data on climate characteristics [6–8].

Several researchers have assessed the performance of GCMs from

the global [5], national [9,10] and regional [11,12] scales

respectively. The results have demonstrated that not all GCMs

are able to provide a similarly accurate description of the present

climate [13–18]. Furthermore, it should be noted that the

performance of the AR4 GCMs is not uniformly consistent over

large geographical areas, especially for the extreme climate

variables [11,12]. Consequently, the accuracy of any GCM should

be established through validation studies before using it to predict

future climate scenarios [19]. Although accurate simulation of the

present climate does not guarantee that forecasts of future climate

will be reliable [5], it is generally accepted that the agreement of

model predictions with present observations is a necessary

prerequisite in order to have confidence in the quality of a model

[17], and models that reproduce accurately the present climate are

more likely to provide reasonably accurate predictions of future

climate [20].

China has experienced gradual warming throughout the 20th

Century consistent with the warming observed at global scale. It

was reported that the mean annual surface air temperature in

mainland China increased by about 1.3 uC from 1951 to 2004 due

to the greenhouse effect and rapid urbanization [21]; the warming

rate of about 0.25 uC/decade is more than twice the global

warming rate. No significant trend in mean precipitation occurred
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during this period taking China as a whole [22], however, the

North and northeast regions experienced a 12% decline in

precipitation from 1960 to 2005 while the South had increasing

rainfall during the summer and winter seasons [23] due to the East

Asian Monsoon variability [24–26]. In short, the climate in China

varies considerably in space and time due to the scale and

complexity of its land topography [27].

The present paper aims to assess the performance of the IPCC-

AR4 GCMs in the simulation of precipitation and temperature

throughout mainland China (excluding Taiwan island) from the

spatial scale (country and large river basin) and temporal scale

(intra- and inter- annual) respectively.

Materials and Methods

Data
Observed data on surface air temperature and precipitation for

the period from 1960 to 1999 were obtained from the National

Meteorological Information Center, China Meteorological Ad-

ministration. Daily measurements of daily temperature and

precipitation were acquired from a total of 731 meteorological

stations (Figure 1), and subjected to quality control processes

including homogenization, cross-validation, and topographic

correction [28]. Following Chinese Bureau of Meteorology

Standards, monthly and annual climatic datasets were derived

from daily data, and interpolated onto a grid at 1u61uresolution

comprising a total of 1023 cells covering mainland China. Further

details of the quality control processes and the archived raw data

are given by the National Meteorological Information Center

(NMIC, available at http://cdc.cma.gov.cn). It should also be

noted that the observed data from each meteorological station

were interpolated onto the grid with topographic correction

provided by a high resolution digital elevation model (DEM).

However, topographic corrections were not applied during the

grid interpolations of the outputs of the AR4 GCMs, which

unavoidably impacts on model accuracy.

Monthly temperature and precipitation simulation data were

produced by the 24 AR4 GCMs as part of the Coupled Model

Intercomparison Project Phase 3 (CMIP-3) of the World Climate

Research Programme (WCRP). The data are stored in a multi-

model dataset [29,30] archived by the Program for Climate Model

Diagnosis and Intercomparison (PCMDI, available at https://esg.

llnl.gov:8443/index.jsp ). The CMIP-3 data outputs used herein

are taken from the Twentieth Century (20C3M) experiment,

which has the most realistic forcings. Table 1 lists the various

models. Further details of model status, model documentation,

related references, etc., are available from the website http://

www-pcmdi.llnl.gov/ipcc/info_for_analysts.php. The spatial res-

olution of the models used in the present analysis varied from

1.125u61.125u for GCM 16 (miroc3_2_hires model) to 5u64u for

GCM 10 (giss_model_e_h model) [1]. For comparison purpose, all

model results were interpolated to the same resolution as that of

the observed data (1u61ugrid). All model outputs are taken from a

single result (run 1).

Skill score metrics
In analyzing the simulated temperature and precipitation

patterns from 1960 to 1999, four metrics were used to indicate

the overall agreement between the predictions P from each AR4

GCM and the measured observations O. The first metric is the

system bias (B) between the 40-year mean values of the simulated

and observed data:

B~
X

(�PP{�OO) ð1Þ

in which the overbar indicates a time-average.

The second metric is the spatially (and temporally) aggregated

root-mean-square error (RMSE) between the simulated and

observed data [7]:

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i~1

(Pi{Oi)
2

s
ð2Þ

where the summation is taken over a total of n spatial grid points

(or temporal units). Thus, the smaller is the value of RMSE, the

closer are the point-wise magnitudes of the simulated and observed

climate characteristics.

The third metric is the Pearson correlation coefficient that

quantifies similarities between the spatial (and temporal) patterns

of the predicted and the observed values:

R~

Pn
i~1

(Pi{�PP)(Oi{�OO)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

(Pi{�PP)2

s
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

(Oi{�OO)2

s ð3Þ

where, again, all summations are over a total of n spatial grid

points (or temporal units). The Pearson correlation coefficient

R[½{1, 1�, with R,1 implying a close match between the (spatial

or temporal) patterns of simulated and observed climate charac-

teristics, and R,0 indicating a lack of similarity. When R,21, the

respective simulated and observed fields are similar in pattern, but

their point-wise (spatial or temporal) variations are oppositely

signed.

The fourth metric is the Nash-Sutcliffe model efficiency (E) [31]

that assesses quantitatively the accuracy of the (spatial or temporal)

patterns of the model outputs from:

Figure 1. Locations of meteorological stations and major river
basins in mainland China. The color coding relates to the following
river basins: 1 Songhua River; 2 Liaohe River; 3 Haihe River; 4 Yellow
River; 5 Huaihe River; 6 Yangtze River; 7 southeast drainage area rivers; 8
Pearl River; 9 southwest drainage area rivers; 10 northwest drainage
area rivers.
doi:10.1371/journal.pone.0044659.g001
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PLOS ONE | www.plosone.org 2 September 2012 | Volume 7 | Issue 9 | e44659



E~1{

Pn
i~1

(Oi{Pi)
2

Pn
i~1

(Oi{�OO)2
ð4Þ

where E[½{?,1�. In interpreting the results, it should be noted

that E,1 indicates better accuracy, E = 0 indicates the predictions

have accuracy equal to the mean of the observations, and E,0

indicates that the observed mean is better than the model as a

predictor [32].

Results

System bias analysis
Figure 2 shows the system bias for each of the 24 AR4 GCMs

obtained by comparing the 40-year overall mean values of the

observed and simulated data on annual mean precipitation and

temperature. The GCMs give reasonably accurate predictions of

the temperature, but are less successful at reproducing the

precipitation. All GCMs overestimate precipitation throughout

China, with GCM 10 (giss_model_e_h) giving the maximum

system bias, which is almost double the annual mean precipitation.

It should be noted that the 40-year mean of observed precipitation

is 563.1 mm/yr. For temperature, 18 models underestimate the

annual mean temperature, and the rest overestimate. The

maximum system bias (for temperature simulation) comes from

GCM 7 (gfdl_cm2_0) with a value of 24.30 K/yr. GCM 16

(miroc3_2_hires) performs best with a low system bias of 0.065 K/

yr.

Spatial simulations after removal of system bias
In order to assess systematically the performance of the AR4

GCMs, the system bias is removed from each dataset by

multiplying the monthly model data by the ratio of overall mean

model data to overall mean observed data. Figure 3 shows that the

calculated spatial correlation coefficients obtained are invariably

over 0.5, except for GCM 12 (iap_fgoals1_0_g) and GCM 22

(ncar_pcm1). This indicates that the majority of the AR4 GCMs

provide satisfactory simulations of the spatial distribution of annual

mean precipitation during 1960–1999. GCM 10 (giss_model_e_h)

and GCM 11 (giss_model_e_r) give the poorest simulations

comparatively speaking, with E,0 and the highest values of

RMSE. GCM 23 (ukmo_hadcm3) is the best overall at simulating

the spatial distribution of annual precipitation (with R = 0.85 and

E = 0.71). Turning to annual mean temperature, the spatial

correlation coefficients obtained for the AR4 GCMs are invariably

over 0.8, and, in general, it can be seen from Figure 3 that the

AR4 GCMs are better at simulating the spatial distribution of

annual mean temperature than that of precipitation. Similar to the

comparative performance for annual mean precipitation, GCM 10

(giss_model_e_h) and GCM 11 (giss_model_e_r) perform worst

spatially for annual mean temperature in terms of E and RMSE.

GCM 13 (ingv_echam4) gives the most accurate results in terms of

the spatial distribution of the annual mean temperature data, with

R = 0.96 and E = 0.93.

Table 1. List of the global climate models used in this research.

GCM Model Source

1 bccr_bcm2_0 Bjerknes Centre for Climate Research, Norway

2 cccma_cgcm3_1 Canadian Centre for Climate Modelling and Analysis

3 cccma_cgcm_t63 Canadian Centre for Climate Modelling and Analysis

4 cnrm_cm3 Centre National de Recherches Meteorologiques, France

5 csiro_mk3_0 Australian Commonwealth Scientific and Research Org.

6 csiro_mk3_5 Australian Commonwealth Scientific and Research Org.

7 gfdl_cm2_0 Geophysical Fluid Dynamics Laboratory, United States

8 gfdl_cm2_1 Geophysical Fluid Dynamics Laboratory, United States

9 giss_aom Goddard Institute of Space Studies(NASA), United States

10 giss_model_e_h Goddard Institute of Space Studies(NASA), United States

11 giss_model_e_r Goddard Institute of Space Studies(NASA), United States

12 iap_fgoals1_0_g Institute of Atmospheric Physics, China

13 ingv_echam4 National Institute of Geophysics and Volcanology, Italy

14 inmcm3_0 Institute for Numerical Mathematics, Russia

15 ipsl_cm4 Institut Pierre Simon Laplace, France

16 miroc3_2_hires Center for Climate System Research, Japan

17 miroc3_2_medres Center for Climate System Research, Japan

18 miub_echo_g Meteorological Institute of the University of Bonn, Germany

19 mpi_echam5 Max-Planck-Institute for Meteorology, Germany

20 mri_cgcm2_3_2a Meteorological Research Institute, Japan

21 ncar_ccsm3_0 NCAR Community Climate System Model, USA

22 ncar_pcm1 NCAR Parallel Climate Model, USA

23 ukmo_hadcm3 Hadley Centre for Climate Prediction, UK

24 ukmo_hadgem1 Hadley Centre for Climate Prediction, UK

doi:10.1371/journal.pone.0044659.t001
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Figure 4 presents the best performance spatial distribution

simulations (from GCM 23 - ukmo_hadcm3 for precipitation and

GCM 13 - ingv_echam4 for temperature ). The plots confirm that

the AR4 GCMs reproduce the important spatial characteristics of

precipitation and temperature in mainland China. The climate

warm and wet in South China, but cool and dry in northwest

China and northeast China. Figure 4 also provides error contours

obtained using the best performing models. Regions where the

precipitation error is largest are indicated by the superimposed

ellipses in southeast China and West China. The maximum error

in temperature simulation occurs in northeast China and West

China.

Temporal simulations after removal of system bias
Figure 5 shows the temporal performance of AR4 GCMs in

simulating annual mean precipitation and annual mean temper-

ature for mainland China. By comparison with Figure 3, the

results presented in Figure 5 show that the GCMs provide less

accurate inter-annual temporal than spatial simulations. This is

especially the case for precipitation where, for all GCMs, R,0.4

and E,0, implying that the observed mean is a better predictor

than the model. For temperature simulation, R is mainly between

0.3–0.5, and E remains unacceptable. It is generally accepted that

the warming in the late 20th century in AR4 GCMs was likely

mainly due to increases of greenhouse gases [9,33]. Hence, the

time series after linear detrending will represent the performance

of GCMs in simulating inter-annual variabilities more objective. It

is found that the correlation after linear detrending between the

observation and the GCM simulation is weaker further (R,0.2,

E,0 for precipitation, and R,0.3, E,0 for temperature in all

GCMs) when comparing with the original time series. Conse-

quently, direct use of the GCM outputs to model the inter-annual

variation is not recommended in mainland China, especially for

the precipitation simulation.

Figure 6 illustrates the performance of the AR4 GCMs in

temporal simulation of the 10-year moving average precipitation

and temperature. Although the AR4 GCMs are much less

accurate at representing the 10-year moving average precipitation

than the temperature, the precipitation results are nevertheless

considerably improved in comparison with the temporal inter-

annual variability of mean precipitation (in Figure 5); and the

results from GCM 3 (cccma_cgcm_t63 ) appear to be relatively

acceptable. Turning to 10-year moving average temperature, it

can be seen that the trend is accurately simulated by all the models

except GCM 7 (gfdl_cm2_0) and GCM 22 (ncar_pcm1). GCM 16

(miroc3_2_hires) performs best with E = 0.83 and R = 0.96. In

short, the results imply that the AR4 GCM simulations give an

approximate view of the inter-decadal and long-term trends of

temperature over China.

Figure 7 plots the simulated and observed forty-year average

monthly precipitation and temperature in mainland China. The

observed precipitation and temperature results show the steep

onset of summer rainfall associated with the summer monsoon,

which peaks sharply in July. Almost all the AR4 GCMs succeed in

capturing the seasonal variation characteristics of a single peak,

except the monthly precipitation simulations by GCMs 10

(giss_model_e_h), 11 (giss_model_e_r) and 18 (miub_echo_g).

Almost all the AR4 GCMs overestimate the precipitation in winter

and spring, and underestimate the precipitation in summer. The

resulting gross estimation error implies that these models are

unlikely to be directly useful for hydrological impact assessment. In

general, the AR4 GCMs simulate the forty-year average monthly

temperature more accurately than the corresponding precipita-

tion. All models capture the bell-shape of the forty-year average

monthly temperature profile. However, certain models (i.e. GCM

5 - csiro_mk3_0, GCM 14 - inmcm3_0 and GCM 24 -

ukmo_hadgem1) predict temperatures that are too hot in summer

and too cold in winter. Other models (such as GCM 19 - giss_aom

and GCM 18 miub_echo_g) predict a climate that is too cool in

summer and too warm in winter. Overall, GCM 3

(cccma_cgcm_t63) gives the most accurate forty-year average

climate simulation.

Probability density functions after removal of system bias
Figure 8 shows the probability density functions (PDFs) of

annual mean precipitation and annual mean temperature. The

PDF for the observed annual mean precipitation covers a range

from 475 mm to 678 mm, and is slightly skewed (due to the

monsoon effect). In general, the simulated PDF for annual mean

precipitation is similar but narrower and taller than the observed

PDF, especially for GCM 9 (giss_aom) and GCM 20

(mri_cgcm2_3_2a) which give the two highest peaks in the left

hand plot of Figure 8. The PDF for observed annual mean

temperature ranges from 277.8 K to 280.5 K, and is again

asymmetric with a steep rising limb and a broader undular tail.

Typically, the AR4 GCMs simulate a wider, lower PDF profile for

annual mean temperature that is symmetric and possibly

Gaussian, except GCM 1 (bccr_bcm2_0) and GCM 5 (csir-

o_mk3_0), which give the two largest peaks in the right hand plot

of Figure 8.

Figure 2. Bar chart indicating the system bias of different AR4 GCMs with regard to annual mean precipitation (P) and temperature
(T) in mainland China during 1960–1999.
doi:10.1371/journal.pone.0044659.g002
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Discussion

The present study has demonstrated that the AR4 GCMs

exhibit a wide range of performance skills in reproducing the

recent (1960–1999) observed climate throughout mainland China.

Measured and simulated surface air temperatures and precipita-

tions have been interpreted in terms of spatial distributions, inter-

annual and intra-annual trends, and PDFs in order to evaluate the

performance of the AR4 GCMs. The results demonstrate that

certain models are unsuitable for application to China, with little

capacity to simulate the spatial variations in climate across the

country. It should be emphasized however that the present

conclusions should not be generalized to other climate variables or

to other regions of the world.

In general, the simulations are more accurate in space than

time, and temperature is better simulated than precipitation.

When carrying out research into continental precipitation, it is

found that the AR4 GCMs exhibit systematic model bias with

most models displaying aggregated precipitation variability mag-

nitudes that are larger than observed [19]. The present study

shows similar overestimation to be the case for AR4 GCM

simulations of temperature and precipitation in China. The

ubiquitous system bias means that caution should be applied when

using outputs from the AR4 GCMs in hydrological and ecological

assessments..

Several potentially disturbing factors complicate the agreement

between the models and reality. The first is model resolution. It is

believe that higher resolution does not automatically lead to

improved model accuracy [6]. The present research confirms this

Figure 3. Bar chart indicating relative performances of the AR4 GCMs with regard to the spatial simulation of annual mean
precipitation (P) mm and temperature (T) K in mainland China during 1960–1999.
doi:10.1371/journal.pone.0044659.g003

CMIP3 Dataset Assessment in China
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view. Whereas GCM 13 (ingv_echam4) gives the best spatial

temperature simulation, its resolution is only moderate. However,

the degree of resolution must have an effect on the accuracy of the

spatial simulation of a given model, even after the model outputs

have been interpolated onto a grid of uniform resolution (1u61u in

the present study).

The second factor relates to the quality of the observed data.

Meteorological stations are non-uniformly distributed in China,

with stations particularly sparse in the West and northwest of

China. Although interpolation is used to deal with the scarcity of

meteorological data in these regions, the results do not properly

represent the actual climate due to limitations of the interpolation

techniques used. The lack of meteorological stations in the West of

China is therefore mainly responsible for the occurrence of the

largest errors in this region (Figure 4). On the other hand, the

observed climatological records often contain inhomogeneities,

which is defined as a change point (a time point in a series such

that the observations have a different distribution before and after

this time) in the data series [34]. The causes of inhomogeneity can

be induced by several non-climatic factors: changes in measure-

ment practices, station relocations, changes in the surroundings of

a station over the years, etc. [35]. The homogeneity of observed

data has not been detected in this research. If the inhomogeneity is

identified and then homogenization techniques are performed to

compensate for the biases produced by the inhomogeneities, it is

possible potentially improve the agreement of AR4 GCMs with

the observations.

The third factor is scale. The AR4 GCMs were used to simulate

changes in the climate as a result of slow alterations to certain

parameters (such as the greenhouse gas concentration and the

solar constant), which affect the energy balance at the global scale.

Previous research has shown that data from the AR4 GCMs can

accurately reproduce the spatial variations in climate character-

istics in Iberia [14], Australia [36], North America [37], and global

Figure 4. Spatial simulation results for annual mean precipitation (P) and temperature (T) distributions in mainland China. Best
simulation means the best model’s simulated results; ukmo_hadcm3 is the best performance precipitation simulation and ingv_echam4 is the best
performance temperature simulation; Error is the error between the observed and the best model simulation.
doi:10.1371/journal.pone.0044659.g004

CMIP3 Dataset Assessment in China
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continents [19]. However, China is a region of particularly

complicated topography, with the Tibetan Plateau to the West and

various mountain chains in the northern and central regions [27].

China lies mainly in the northern temperate zone and experiences

an annual monsoon season. Consequently, China’s climate differs

considerably from region to region, making accurate local

simulation by the AR4 GCMs less likely. This scale discrepancy

certainly influences AR4 GCM performance when applied to

regions within China.

The fourth factor relates to forcing agents of GCMs. Three

possible forcing agents have been identified to contributors to the

20th century global warming [8,38], mainly includes anthropo-

genic greenhouse gases forcing (CO2, CH4, N2O, etc.), natural

forcing (sulfate aerosols and ozone change) and the internal

variability of climate system itself (North Atlantic Oscillation,

NAO and E1 Niño – Southern Oscillation, ENSO). Although

preexisting researches have suggested the late 20th warming was

likely mainly due to increases of greenhouse gases [33], it was

reported that the inclusion of natural forcing has improved the

simulation [9]. Some GCMs have not included the time-varying

natural forcings, such as bccr_bcm_2_0, csiro_mk3_0 etc.. On the

other hand, the internal variability of the climatic system is still not

full considered in AR4 GCMs. All of these certainly influence the

performance of inter-annual simulation. Consequently, AR4

GCMs give unsatisfactory simulations of the inter-annual temporal

variability but acceptable inter-decadal variability simulations.

In practice, any user of AR4 GCM data would certainly hope to

choose the best model for a particular region, and skill score

Figure 5. Bar chart indicating relative performances of the AR4 GCMs regarding the temporal simulation of inter- annual mean
precipitation (P) and temperature (T) in mainland China during 1960–1999.
doi:10.1371/journal.pone.0044659.g005

CMIP3 Dataset Assessment in China
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metrics provide a way of ranking the AR4 GCMs. However, the

present study shows that no one model is best at spatial, inter-

annual, and intra-annual simulations of both precipitation and

temperature. From the results, it is obvious that the inter-annual

simulations (temperature and precipitation) by AR4 GCMs are not

suitable for direct application. It is recommended that techniques

for improving annual simulation should be first investigated.

Previous research has indicated that multi-model ensemble

Figure 6. Bar chart indicating relative performances of the AR4 GCMs regarding the temporal simulation of the 10-year moving
averages of precipitation (P) and temperature (T) in mainland China during 1960–1999.
doi:10.1371/journal.pone.0044659.g006

Figure 7. Observed and simulated forty-year averages of monthly precipitation and temperature throughout a calendar year in
mainland China during 1960–1999.
doi:10.1371/journal.pone.0044659.g007

CMIP3 Dataset Assessment in China
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simulation can produce better agreement with observed data than

any single model [7,19]. Various ensemble prediction methods

have been proposed, including simple model averaging [19,39],

reliability ensemble averaging [40], and Bayesian model averaging

[7]. The present study has focused on assessing the performance of

each AR4 GCM in assessing certain climate characteristics in

China. Multi-model ensemble prediction is recommended as the

next step.

Based on comprehensive performance of the models simulation

for spatial distribution and inter-decadal trend, we recommend

that the best climate models to China are GCM 15 (ipsl_cm4) for

temperature, and GCM 3 (cccma_cgcm_t63) for precipitation. As

shown in Figure 1, China can be divided into ten large or

aggregate river basins comprising the Songhua River, Liaohe

River, Haihe River, Yellow River, Huaihe River, Yangtze River,

southeast drainage area rivers, Pearl River, southwest drainage

area rivers and northwest drainage area rivers. Table 2 lists the

models which give the best simulations after 10-year moving

average in precipitation and temperature for each basin. The

results once again demonstrate that no AR4 GCM performs

consistently the best throughout mainland China.

The AR4 GCMs do not perform uniformly well in simulating

the characteristic spatial and temporal behaviors of temperature

and precipitation in China. No one model is best at all simulations.

In general, the AR4 GCMs tend to overestimate the precipitation

and temperature over China. Furthermore, the model simulations

are better at fitting the spatial than the annual temporal behavior,

and provide more accurate simulations of temperature than

precipitation. By ranking the models according to the four skill

score metrics, it has been found that the most appropriate climate

models for application to mainland China are GCM 15 (ipsl_cm4)

for temperature and GCM 3 (cccma_cgcm_t63) for precipitation.

We recommend that AR4 GCM outputs of annual changes in

temperature and precipitation are not applied directly to scenarios

specific to mainland China. Instead, it is necessary that the data

accuracy be improved.

Precipitation and temperature are climate parameters that

directly affect hydrological processes, agricultural production,

ecosystem restoration, and environmental protection in China. At

river basin scale, GCM 14 (inmcm3_0), GCM 12 (iap_f-

goals1_0_g), GCM 10 (giss_model_e_h), GCM 12 (iap_f-

goals1_0_g), GCM 19 (mpi_echam5), GCM 18 (miub_echo_g),

GCM 23 (ukmo_hadcm3), GCM 22 (ncar_pcm1), GCM 13

(ingv_echam4) and GCM 2 (cccma_cgcm3_1) provide the best

results in simulating the inter-decadal precipitation trends in the

Songhua River, Liaohe River, Haihe River, Yellow River, Huaihe

River, Yangtze River, southeast drainage area rivers, Pearl River,

southwest drainage area rivers and northwest drainage area rivers

respectively. GCM 18 (miub_echo_g), GCM 24 (ukmo_hadgem1),

GCM 18 (miub_echo_g), GCM 18 (miub_echo_g), GCM 18

(miub_echo_g), GCM 11 (giss_model_e_r), GCM 11 (giss_mo-

del_e_r), GCM 15 (ipsl_cm4), GCM 10 (giss_model_e_h), GCM 9

(giss_aom) are recommended respectively when simulating the

inter-decadal temperature trends in the same regions. The results

Figure 8. Probability density functions for annual mean precipitation and annual mean temperature in mainland China during
1960–1999.
doi:10.1371/journal.pone.0044659.g008

Table 2. Top ranked climate model for different river basins.

Precipitation simulation

Basin 1 2 3 4 5 6 7 8 9 10

GCM 14 12 10 12 19 18 23 22 13 2

Temperature simulation

Basin 1 2 3 4 5 6 7 8 9 10

GCM 18 24 18 18 18 11 11 15 10 9

doi:10.1371/journal.pone.0044659.t002
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have shown that each AR4 GCM performs differently in different

regions of China, particularly with respect to precipitation.

Further research is required regarding simulation of the climate

characteristics of China. This includes further assessment of the

accuracy of AR4 GCMs (by considering other climate variables

and skill score metrics), application of the homogenization

techniques, and using uncertainty analyses and multi-model

ensemble predictions to improve the reliability of the model

outputs.
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